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Abstract

Detecting abrupt changes in a stochastic system on the basis of sequential observations is a major
problem of the statistical reliability theory. The traditional methods specify a required frequency
of false alarms for a given pre-change distribution. However, these methods are inappropriate in
the new applications such as detecting terrorism attack and intrusion attack in communication
networks. The reasons are: (1) a required frequency of false alarms cannot control the risk of
an attack; and (2) when there are no attacks, it is possible that the true distribution of the
observations could be any of a range of “acceptable” pre-change distributions. In this paper we
present a different formulation by specifying a required quickness of detection and seeking to
minimize the frequency of false alarms for all possible pre-change distributions. We also offer
asymptotically optimal procedures that are easy to implement.

1 Introduction

Detecting abrupt changes in a stochastic system on the basis of sequential observations is a major problem
of the statistical reliability theory. Extensive research has been done during last few decades. For recent
reviews, we refer readers to Basseville and Nikiforov (1993), Lai (1995), and the references therein.

The standard methods in parametric approach assume that the parameter θ in the probability density
fθ of the data is equal to some known value θ0 before a change occurs. Some popular procedures are
Shewhart’s control charts, moving average control charts, Page’s CUSUM procedure, and the Shiryayev-
Roberts procedure. When the true θ is unknown before a change occurs, it is typical to assume that a training
sample is available so that one can use the method of “point estimation” to obtain a value θ0. However, it is
well-known that the performances of such procedures are very sensitive to the error in estimating θ, see, for
example, Stoumbos, Reynolds, Ryan, and Woodall (2000). Thus we need to study change-point problems
for composite pre-change hypotheses, which allow a range of “acceptable” values of θ.

There are many practical situations where the need to take action in response to a change in a parameter
θ is definable by a fixed threshold value. For instance, consider the surveillance of the incidence of rare health
events. If the underlying disease rate is greater than some specified level, we want to detect it quickly so as
to enable early intervention from a public health point of view and to avoid a much greater tragedy. Another
example occurs in the applications such as detecting terrorism attack and intrusion attack in communication
networks. Parameters θ associated with the activities in networks could be any of a range of ”acceptable”
values before the attack occurs. Moreover, the standard formulation which specifies a required frequency of
false alarms cannot control the risk of the attack.

In this paper we present a different formulation by specifying a required quickness of detection and
seeking to minimize the frequency of false alarms for all possible pre-change distributions. As an illustration,
we will focus on the problem of detecting a change of the parameter value θ in the exponential distribution
fθ(x) = θ exp(−θx)I(x ≥ 0).

2 Problem Formulation

Suppose one observes a sequence of independent exponential random variables X1, X2, . . . . At some unknown
time ν, which is usually called a change-point, the parameter value θ in the exponential distribution fθ of Xi



changes to another value λ. In other words, X1, . . . , Xν−1 are distributed according to a “pre-change” density
function fθ and Xν , Xν+1, . . . are distributed according to a “post-change” density function fλ. Denote by
P ν

θ,λ and Eν
θ,λ the corresponding probabilities and expectations. We shall also use Pθ and Eθ to denote the

probability measure and expectation, respectively, under which X1, X2, . . . are i.i.d. with density fθ.
Mathematically, a detection procedure is defined as a stopping time τ with respect to {Xi}i≥1. The

interpretation of τ is that, when τ = n, we stop taking observations at time n and declare that a change has
occurred somewhere in the first n observations. The performance of a stopping time τ is usually evaluated
by two criteria: the long and short Average Run Lengths (ARL). The long ARL is defined by Eθτ. Imagining
repeated applications of such procedures, practitioners refer to the frequency of false alarms as 1/Eθτ and
the mean time until a false alarm as Eθτ. The short ARL can be defined by the following worse case detection
delay, proposed by Lorden (1971),

Eλτ = sup
ν≥1

(
ess sup Eν

θ,λ[(τ − ν + 1)+|X1, . . . , Xν−1]
)
.

Note that the definition of Eλτ does not depend upon the pre-change distribution fθ by virtue of the essential
superum, which takes the “worst-possible X’s before the change.”

Our problem can be stated as follows: Find a stopping time τ such that the mean time until a false
alarm, Eθτ, is as large as possible for all 0 < θ ≤ λ, subject to the constraint

Eλτ ≤ γ, (1)

where γ is a given constant.

3 Asymptotically Optimal Procedures

For each θ, Page’s CUSUM procedure stops when for some k ≥ 1 the last k observations satisfy

n∑

i=k

(
(log λ− log θ)− (λ− θ)Xi

)
≥ Cθ.

In order to satisfy (1), it is well-known that Cθ ≈ I(λ, θ)γ, where I(λ, θ) = θ/λ − 1 − log(θ/λ) is the
Kullback-Leibler information number. See, for example, Page 26 of Siegmund (1985).

For our problem, it is natural to consider simultaneous Page’s CUSUM procedures. Since the pre-change
hypothesis is a union of the individual pre-change hypothesis, the intersection-union method, see for example
Berger and Hsu (1996), suggest a procedure which stops when for some k ≥ 1 the last k observations satisfy

n∑

i=k

(
(log λ− log θ)− (λ− θ)Xi

)
≥ I(λ, θ)a for all 0 < θ ≤ λ.

A routine calculation shows that this procedure can be written as

M(a, λ) = inf
{

n ≥ a : max
1≤k≤n−a+1

n∑

i=k

(
1− λXi

)
≥ 0

}
. (2)

In order to implement M(a, λ) numerically, we can express M(a, λ) as

M(a, λ) = inf
{

n ≥ b : Wn−b +
n∑

i=n−b+1

(
1− λXi

)
≥ 0

}
, (3)

where b = [a],W0 = 0, and Wk = max{Wk−1, 0} +
(
1 − λXk

)
. Since Wk can be calculated recursively, this

form reduces the memory requirements at every stage n from the full data set {X1, . . . , Xn} to the data set



of size b + 2, i.e., {Xn−b−1, Xn−b, . . . , Xn}. It is easy to see that this form involves only O(a) computations
at every stage n.

By the definition (2), we can show that Eθ1M(a, λ) = Eθ1M(a, λ). Thus in order the study the properties
(i.e., long and short ARLs) of M(a, λ), it suffices to study EθM(a, λ) for different θ.

It is interesting to note that if a = 1, then M(a, λ) becomes Page’s CUSUM procedure with boundary 0.
In that case, M(a, λ) can be rewritten as

M(1, λ) = inf
{

n ≥ 1 : Xi ≤ 1
λ

}
,

which is one of Shewhart’s control charts. Thus, the ARL of M(1, λ) is given by

EθM(1, λ) =
1

Pθ

(
Xi ≤ 1/λ

) =
1

1− exp(θ/λ)
.

For a ≥ 2, it is difficult to derive the exact formula for EθM(a, λ). In Mei (2003), it was demonstrated
that

EθM(a, λ) ≥ exp
(
I(λ, θ)a

)
for all 0 ≤ θ < λ,

where I(λ, θ) = θ/λ− 1− log(θ/λ). The strong law of large numbers shows that if a (or θ) is large, then

EθM(a, λ)
a

≈ 1 for θ > λ.

Therefore, as θ increases from 0 to ∞, the value of EθM(a, λ) decreases from ∞ to a. Moreover, since the
distribution of (λ/p)Xi under Pθ/p is same for all p > 0, we have

EθM(a, λ) = Eθ/p

(
M(a,

λ

p
)
)

= Eθ/λM(a, 1).

These properties can help us to select a and λ to achieve a prescribed Eθ1M(a, λ) ≈ γ. We can first choose
a to be the maximal number of observations allowed from the post-change distribution fλ with large λ. Next
we can use Monte Carlo methods to find θ0 such that Eθ0M(a, 1) ≈ γ. Finally, the choice of λ = θ1/θ0 will
lead to Eθ1M(a, λ) ≈ γ and EθM(a, λ) ≈ a for large θ.

4 Numerical Results

We now describe the results of a Monte Carlo experiment designed to check the performance of our procedure
M(a, λ). Table 1 reports the sampled average run lengthes of M(a, λ) for a = 5 and λ = 1. We ran 10,000-
repetitions to simulate EθM(a, λ) for different θ. Each result in Table 1 is recorded as the Monte Carlo
estimate ± standard error.

If we want to design a procedure M(5, λ) satisfying Eθ1=1M ≈ 20, then Table 1 tells us that
Eθ0≈0.5M(5, 1) ≈ 20. Thus λ = θ1/θ0 = 2 will be desired values. Furthermore, Eθ=0.4M(5, 2) =
E0.2M(5, 1) ≈ 377 while Eθ=0.3M(5, 2) = E0.15M(5, 1) ≈ 1191.

Table 1: Average run length (sampled)

Values of θ
0.15 0.2 0.25 0.3 0.4 0.5 0.7 0.8 1 1.5 2

EθM(5, 1) 1191 377 165 89 37.02 20.94 10.76 8.69 6.71 5.28 5.05
±12 ±4 ±2 ±1 ±0.33 ±0.17 ±0.07 ±0.05 ±0.03 ±0.01 ±0.00



5 Conclusion

We have studied a change-point problem where the pre-change distribution involves unknown parameters. In
the problem of detecting a change of the parameter value θ in exponential distribution fθ, we have presented
a new formulation by specifying a required average time to detection after the value of θ shifts to a specified
λ while minimizing the frequency false alarms over a range of possible values of θ before a change occurs.
We have also proposed asymptotically optimal procedures which are easy to implement.

Acknowledgements

This work was supported in part by the National Institutes of Health under Grant R01 AI055343.

References

Basseville, M. and Nikiforov, I. (1993). Detection of Abrupt Changes: Theory and Applications. Engle-
wood Cliffs, Prentice-Hall.

Berger, R. L. and Hsu, J. C. (1996). Bioequivalence trials, intersection-union tests and equivalence
confidence sets (with discussion). Statist. Sci. 11, 283-319.

Lai, T. L. (1995). Sequential change-point detection in quality control and dynamical systems. J. Roy.
Statist. Soc. Ser. B 57, 613-658.

Lorden, G. (1971). Procedures for reacting to a change in distribution. Ann. Math. Statist. 42,
1897-1908.

Mei, Y. (2003). Asymptotically optimal methods for sequential change-point detection. Ph.D. the-
sis, California Institute of Technology. Available at <http://resolver.caltech.edu/CaltechETD:etd-
05292003-133431> .

Siegmund, D. (1985). Sequential Analysis: Tests and Confidence Intervals. New York: Springer-Verlag.
Page, E. S. (1954). Continuous inspection schemes. Biometrika 41, 100-115.
Stoumbos, Z., Reynolds, M. R. Jr., Ryan, T. P. and Woodall, W. H. (2000). The state of statistical

process control as we proceed into the 21st century. J. Amer. Statist. Assoc 95, 992-998.


